A Quasi-Newton Approach to Nonsmooth Convex Optimization Problems in Machine Learning
نویسندگان
چکیده
We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: the local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We prove that under some technical conditions, the resulting subBFGS algorithm is globally convergent in objective function value. We apply its memory-limited variant (subLBFGS) to L2-regularized risk minimization with the binary hinge loss. To extend our algorithm to the multiclass and multilabel settings, we develop a new, efficient, exact line search algorithm. We prove its worst-case time complexity bounds, and show that our line search can also be used to extend a recently developed bundle method to the multiclass and multilabel settings. We also apply the direction-finding component of our algorithm to L1-regularized risk minimization with logistic loss. In all these contexts our methods perform comparable to or better than specialized state-of-the-art solvers on a number of publicly available data sets. An open source implementation of our algorithms is freely available.
منابع مشابه
New Quasi-Newton Optimization Methods for Machine Learning
This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...
متن کاملProximal Newton-type methods for convex optimization
We seek to solve convex optimization problems in composite form: minimize x∈Rn f(x) := g(x) + h(x), where g is convex and continuously differentiable and h : R → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. We derive a generalization of Newton-type methods to handle such convex but nonsmooth objective functions. We prove such met...
متن کاملA Quasi-Newton Approach to Nonsmooth Convex Optimization A Quasi-Newton Approach to Nonsmooth Convex Optimization
We extend the well-known BFGS quasi-Newton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting subLBFGS algorithm to L2-reg...
متن کاملEfficient evaluation of scaled proximal operators
Quadratic-support functions [Aravkin, Burke, and Pillonetto; J. Mach. Learn. Res. 14(1), 2013] constitute a parametric family of convex functions that includes a range of useful regularization terms found in applications of convex optimization. We show how an interior method can be used to efficiently compute the proximal operator of a quadratic-support function under different metrics. When th...
متن کاملA quasi-Newton proximal splitting method
A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration of convex minimization problems, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010